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The characteristic equation for a linear elastic system having zero natural frequencies to which a linear elasto-viscous oscillation 
damper is attached is dlerived. It is shown that if this damper has one degree of freedom and is not connected to a fixed base, 
the characteristic equal:ion can be reduced to a form similar to that obtained for the case when the elastic system has no zero 
natural frequencies. The problem of finding the values of  the damper parameters for which the minimum of  all the attenuation 
decrements, corresponding to the least non-zero natural frequencies, has the maJdmum possible value, is similar to the same 
problem for a non-free elastic system. 

Many papers have been pubfished on the subject of damping of oscillations in elastic systems using elasto- 
viscous dampers (fi3r example, [1-3]). The problem of finding those damper parameters for which the 
minimum of all the damping decrements in a two-mass system has the maximum possible value was 
solved in [4]. This problem was extended in [5] to the case when a damper with one degree of freedom 
is connected to an elastic system with an arbitrary number of degrees of freedom, but only decrements 
corresponding to the least natural frequencies were considered. A characteristic equation was derived 
in [6] for an elastic system with an elasto-viscous damper of a fairly general form connected to it. 

The results obtained relate to the case when the elastic system is fixed and dynamically stable, when 
all its natural frequencies are real and positive. However, as will be shown below, many of these results 
can also be extended to the case when the elastic system has a finite number of zero natural frequencies. 

Suppose a free el[astic system of finite mass M occupies a volume Vand has N oscillatory degrees of 
freedom and N1 "non-oscillatory" degrees of freedom (corresponding to its displacement as a rigid solid). 
Of these degrees of freedom there are not more than three translational and three rotational, and hence 
N1 ~< 6. If p(X) is the matrix of generalized densities of the elastic system, and f~l ~ f~2 ~< • • • ~< f~N 
are its non-zero natural frequencies, all the eigenfunctions of the elastic system can be orthonormalized 
to its mass 

! 

jUoj(X)p(X)uok(X)dV(X) = MSjk (1 ~< j,k <~ NI) 
v 

f ~Uoj(X)p(X)uk(X)dV(X )=0 (16 j~<N I, l~<k~<N) 
v 

lutj(X)p(X)uk(X)dV(X)=M~jk (1~ < j, k ~< N) 
V 

Here u0.(X) (1 ~ j -'~ Ni) are the eigenfunctions corresponding to the zero natural frequencies, u.(X) P/ . . ? 
(1 ~<j ~< N) are the corresponding non-zero natural frequencies and dV(X) ts an element of volume at 
the point X. Gener~Llly speaking it is possible to have N = oo. 

If a linear elasto-viscous damper, the transfer matrix of which is known, is attached to the elastic 
system, a characteristic equation can be derived for this system with the damper in the same way as 
when there are no zero natural frequencies. However, zero roots can also occur; they correspond to 
the combined motic,n of the elastic system and the damper. The problems involved in optimizing the 
damper parameters m this case can be formulated and solved in the same way as for fixed elastic systems, 
but the zero roots are ignored. If the damper has the form of a point mass connected to the elastic 
system with a linear elasto-viscous coupling, it is necessary to obtain those values of the parameters of 
the coupling (the stiiffness and viscosity), that will maximize the minimum of the damping decrements, 
corresponding to the least non-zero natural frequencies [6]. This problem can be inverted and extended 

tPrikl. Mat. Mekh. Vol. 59, No. 5, pp. 799-802, 1995. 

769 



770 A.V. Stepanov 

to a more complex case, namely, to obtain, for a damper of given construction, those values of the mass 
and parameters of the couplings so that the overall mass of the damper is the minimum possible and 
all the attenuation decrements in a specified frequency range are not less than a specified value, 
depending on it [7]. 

We will show that if a free point damper with one degree of freedom is connected to an elastic system, 
the problem of optimizing the parameters of this damper can be reduced to the analogous problem 
for a fixed elastic system. Suppose the damper has a mass m, is connected to a point L by a spring of 
stiffness c and with a damper having a coefficient of viscous friction h, and can be displaced in the 
direction of the unit vector n (Fig. 1). Then, using the dimensionless parameters 

m c h 
0 = - - .  ( I =  . z =  . b 0 

M Mf~ Mr11 

:h-T r=-h- T 
(where ~. is a characteristic index) the characteristic equation can be written in the form 

NI 
= Y, [ n t n o j ( L ) ]  2,  b./ =ntuj(L), 

)=l 

(1) 

, t , 9 , N ~)j . 
r 2`v~ 1 +  r 2 - Z  r + O  + 0  r-(-z r + ~ ' ) ~  2 , = 0  

[ i = ,  j= ,  r + ~ 7  
(2) 

(0' = 0(1 + b00) -1, o' = (1 + b00)o, g = (1 + b00)z), which is analogous to the equation derived 
previously in [5]. 

The problem of optimizing the parameters of the damper can be formulated as follows: it is required 
to obtain, as a function of 0', those values of o' and z' such that the least of the real parts of the non- 
zero roots of Eq. (2), the imaginary parts of which are a minimum, are the maximum possible. If we 
are dealing with the damping of the first mode of free oscillations, and 0' ,~ 1, then to achieve this 
maximum, Eq. (2) should have a pair of double complex-conjugate roots close to _i; the real parts of 
these roots are equal to n = I bl I ~(0')[1 + O(0')] / 2. As 0' increases the necessary conditions for o'  
,and z' to be optimum in this sense may change. As 0 ---> .o the parameter 0' has a finite limit b~l; r, n, O', 

2 1 z and the dimensional parameters of the couplings c = Mf~1o%~ and the dimensional parameters of 
the couplings h = Mf~lz'b~ 1 also have finite limits. 

If a more complex damper is connected to the elastic system, the problem cannot be reduced to the 
case when N1 = 0. If the damper consists of a set of several point masses connected by elasto-viscous 
couplings to the same point of the elastic system and which is displaced in the same direction, and it 
is necessary to obtain those values of the damper parameters such that its overall mass is a minimum, 
and the damping decrement of the first few natural frequencies is not less than a given value, the problem 
can be solved in the same way as the case of a fixed elastic system. For small values of the damping 
decrement n the characteristic equation must~ have double complex roots with a common real part n. 
The values of the masses which form the damper are proportional to n2; in particular, for the case con- 

p 1 2 2 sidered above 0 and 0 are equal to 4(b~- n) [1 + O(n )] (7). 

V /. 

Fig. 1. 
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As an example we will consider an elastic system with N1 = N = 1. It may consist of two point masses M1 
and M2 connected by a spring of stiffness C; a point damper of mass m is connected to M1; it as well as the 
masses M1 and .M_2 c~a be displaced in the same direction (Fig. 2). In (1) we have (M = M1 + Me, fll = [(MI + 

11/2 1 1/2 M2)C(M1M2)- ] , w h i l e  1} 0 --  1 ,1)  1 --  (M2M1 - ) . I f  w e  i n t r o d u c e  t h e  d i m e n s i o n l e s s  p a r a m e t e r s  

O,, = 9120, = r a M 2  MIM2(M+m)c z,=(M+m)[MIM2(M3C)-I]~m-lh 
MI(M+m ), 0"= M2mC , 

Eq. (2) will have the :form 

r 2 {r 4 - (i + 0")z ' r  3 + [1 + (1 + 0 ")O' ] r  2 - Z ' r  + O '} = 0 (3) 

and, apart from the factor r 2 on the left-hand side, it is similar to the characteristic equation for a fixed elastic 
system with one degree of freedom. The dimensionless parameters introduced for this system [4] are identical 
with the parameters of Eq. (3) as Me --* **. If we consider a fixed elastic system, connected by an elasto-viscous 
coupling to a fixed foundation [8], the parameters of its characteristic equation will be identical with 0", o',  z '  and 
m -1.) co. 

It was shown in [4] that when if' ~< 4 the optimum value of the dimensionless damping decrement n 7 [0"(1+ 
ff')'~l]la/2, and when if' > 4, n is the minimum positive root of  the polynomial (1 + 0")2n6 + 3(1 + 0~n" - 3(0 ~ - 
1)n" + 1 = 0 and can be calculated using Cardano's formula. When 0" ~< 4 the dimensional damping decrement 
e = ~ l n  = {mC[MI(M1 + m)]-l}It2/2 is independent of  M2 if this quantity is sufficiently small, while if 

mM1-1 ~ 4 (4) 

the decrement e is constant for aH M2. If ml, m and C are constant and condition (4) is satisfied, then when Me ---> 
the optimum valuez of the damper parameters will have the limits 

Ira1 [Cm ] ( MI ~2 ~ CmMI h=2 CMI 
O'=t ' -~ l+m ) , z'=2MI (Ml+m)3 ' C=(Ml+m)2 '  

For the same M2 for which if' > 4, e decreases as M2 increases. 
Consider the case c~ constant M1, M2 and C. Then the quantity fix will also be constant and for the same m for 

which if' < 4 (and only for these), and n and ~ will be increasing functions of m. If M:3/1-1 ~< 4, then for all m we 
will have 0" < 4 and as m -* oo the limits of the optimum values of the damping decrement and the damper 
parameters will be as follows: 

I'~ 2 CM I 
z ' = 2 M t (  M2 , c= , h = 2 ( C M  l )g  

tM" ) M2 

i.e. e is half the natural frequency of the mass M, if it had been connected by a spring of stiffness C to a fixed 
foundation. If  the m~ses M1 and M2 had been connected to it by springs of stiffness c and C, respectively, the 
natural frequencies of these masses would have been the same. 
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